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ABSTRACT
Secondhand smoke exposure (SHSe) is a known cause
of many adverse health effects in adults and children.
Increasingly, SHSe assessment is an element of tobacco
control research and implementation worldwide. In spite
of decades of development of approaches to assess
SHSe, there are still unresolved methodological issues;
therefore, a multidisciplinary expert meeting was held to
catalogue the approaches to assess SHSe and with the
goal of providing a set of uniform methods for future use
by investigators and thereby facilitate comparisons of
findings across studies. The meeting, held at Johns
Hopkins, in Baltimore, Maryland, USA, was supported
by the Flight Attendant Medical Research Institute
(FAMRI). A series of articles were developed to
summarise what is known about self-reported,
environmental and biological SHSe measurements.
Non-smokers inhale toxicants in SHS, which are mainly
products of combustion of organic materials and are not
specific to tobacco smoke exposure. Biomarkers specific
to SHSe are nicotine and its metabolites (eg, cotinine),
and metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK). Cotinine is the preferred blood, saliva
and urine biomarker for SHSe. Cotinine and nicotine can
also be measured in hair and toenails. NNAL
(4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol),
a metabolite of NNK, can be determined in the urine of
SHS-exposed non-smokers. The selection of a particular
biomarker of SHSe and the analytic biological medium
depends on the scientific or public health question of
interest, study design and setting, subjects, and
funding. This manuscript summarises the scientific
evidence on the use of biomarkers to measure SHSe,
analytical methods, biological matrices and their
interpretation.

INTRODUCTION
This article presents the scientific evidence on the
use of biomarkers of secondhand smoke exposure
(SHSe), analytical methods, biological matrices and
their interpretation. A biomarker for SHSe should
be: (a) unique to SHSe; (b) easily detectable using
analytic methods reproducible across laboratories;
(c) reflect known toxic exposures or high correla-
tion with such exposures; and (d) exhibit changed
levels with a corresponding change in disease risk.1

Most toxicants in tobacco smoke result from
combustion of organic materials and are not
specific to SHSe.1 Metabolites of nicotine (cotinine,
trans-3'-hydroxycotinine and their glucuronides,
and nicotine glucuronide) and NNK (NNAL (4-
[methylnitrosamino]-1-[3-pyridyl]-1-butanol) and
its glucuronides) can be measured in SHS-exposed

individuals, with high sensitivity in various
biological matrices (table 1).2 3

SELECTION OF BIOMARKERS OF SHSE
Selection of a SHSe biomarker depends on the
scientific or public health question of interest,
study design and setting, subjects, funding and
laboratory access (figure 1). Novel biomarkers under
development for use in highly controlled settings,
such as chamber studies of exposures to volunteers,
are not discussed here.

Nicotine and metabolites
Nicotine is present in substantial concentrations in
virtually all tobacco products and in insignificant
amounts in some foods.4 5 Nicotine is extensively
metabolised, primarily in the liver, and its major
proximate metabolite is cotinine: on average, 75%
of nicotine is converted to cotinine, primarily by
the liver enzyme cytochrome P450 2A6.6 Cotinine’s
half-life (t1/2), the time in which its concentration
halves, is longer (average: 16 h) than nicotine’s
(2 h). Cotinine concentrations are more stable
throughout the day, making it the preferred blood,
saliva and urine biomarker for SHSe (table 1).
Blood’s cotinine concentrations and saliva are
highly correlated. Urine cotinine concentrations
average fourfold to sixfold higher than those in
blood or saliva, making urine a more sensitive
matrix to detect low-concentration exposure.7 Six
metabolites (nicotine, cotinine and trans-39-
hydroxycotinine (3-HC) and their respective
glucuronide conjugates) account for about 85% to
90% of a nicotine dose, and the sum of these
metabolites in urine provides an approximate
estimate of daily nicotine intake.
Considerable between-individual variability

exists in the rate and pattern of nicotine metabo-
lism, possibly affecting cotinine concentration
resulting from a given nicotine exposure. Factors
influencing nicotine metabolism can include genetic
variation, race, gender, oral contraceptive use or
other oestrogen-containing hormones, kidney
failure and drugs, including anticonvulsants and
rifampin.6 Cotinine concentrations in biofluids and
nicotine in hair are generally higher in infants and
children, compared to SHS-exposed adults; this is
probably due to greater inhaled nicotine doses
(closer proximity to smokers and higher minute
ventilation per body mass) and slower cotinine
metabolism.8

NNK and metabolites
NNK is a nitrosamine and potent carcinogen
formed primarily during tobacco curing, when
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nicotine or pseudo-oxynicotine reacts with nitrite in
tobacco.9 NNK is metabolised in the body to NNAL and NNAL-
glucuronides, commonly measured together, total NNAL
(tNNAL). tNNAL remains in the body longer than cotinine
(t1/2¼10 days to 3 weeks) (table 1). NNAL is a potent lung
carcinogen, with activity similar to NNK, and tNNAL detection
in the urine of SHS-exposed non-smokers forms a biochemical
link between exposure and lung cancer. In rats, NNK and NNAL
are known to induce tumours of the pancreas, and NNK causes
nasal mucosa and liver tumours, although at higher doses than
for lung tumours.9

Concentrations of urine and plasma cotinine are highly
correlated with urine tNNAL,10 11 although no data link these

biomarkers to other SHS chemicals. The dynamic nature of SHS
is critical when interpreting biomarkers for particular exposure
patterns, including brief high-intensity versus sustained low-
concentration exposures. Volatile compounds including nicotine
leave the smoke and adsorb to room surfaces (eg, walls, floors,
furniture) quickly, while other volatile compounds may persist
in the air.12

ANALYTICAL METHODS FOR BIOMARKERS OF SHSE
Choosing a laboratory for analysis should occur early in a study
to assure that the collection protocol is suited to the assay.
Analysis actually begins with sampling, and the collection
protocol may have significant implications for subsequent

Table 1 Biomarkers of secondhand smoke exposure (SHSe), characteristics and cut-off points for distinguishing smokers from non-smokers

Biomarker Half-life Invasiveness Cut-off point Pros Cons

Cotinine Reflects recent SHSe

Urine 16 h (average) Non-invasive 50 ng/ml for higher
SHSe

Higher concentrations than
other matrices
(higher sensitivity)

Need of facilities with privacy during collection
Difficulty for population-based or children studies
Need for creatinine clearance adjustment
Collect data on renal disease and some
prescription drugs

Blood 16 h (average) Invasive 12 ng/ml for higher
SHSe
3 ng/ml for lower
SHSe

No adjustment required
for hydration

Pregnant women have increased clearance rate
Difficulty for infants and young children
Lower sensitivity

Saliva 16 h (average) Non-invasive 14 ng/ml for higher
SHSe

Good for multiple measurements
over a limited period of time

Potential issues with age, gender, race, oral pH,
type of diet, dehydration, or drug treatment
Lower sensitivity

Nicotine/cotinine

Hair 1 cm of hair proximal
to the scalp is
approximately equal to
the last month’s
exposure

Non-invasive 0.8 ng/mg (women)
0.2 ng/mg (pregnant)
0.2 ng/mg (children)

Easy to collect, ship and store
(room temperature #5 years)
Less affected by daily variability
(fluctuating exposure, varying
metabolism and nicotine
elimination)
Represents longer exposure

Scarcity of hair in infants and adults
Chemical hair treatments can reduce
concentrations by 9% to 30%
Age, gender and race may play roles in
determining hair nicotine concentrations

Toenails 1 mm is approximately
equal to last month’s
exposure

Non-invasive Not available Easy to collect, ship and store
(room temperature #20 years)
Overcomes day-to-day exposure
variability
Represents longer exposure

Need for further research and population
concentrations

NNAL*

Urine Up to 3 weeks Non-invasive Not available Related to a lung carcinogen
Represents longer exposure than
cotinine (urine/blood/saliva)

Analytical expertise
Costly equipment
NNAL is carcinogenic and mutagenic,
special lab handling
Further research needed

*NNAL (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol).

Figure 1 Types of study designs and biomarker use. NHANES, National Health and Nutrition Examination Survey; SHS, secondhand smoke.
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assays. Analytical methods include radioimmunoassay,13 14

ELISA,14 15 gas chromatography (GC)-nitrogen-phosphorous
detection (NPD),16 GC-thermal energy analysis (GC-TEA),17

GC-mass spectrometry (GC-MS),18 liquid chromatography
(LC)-electrochemical detection (ECD),19 LC-tandem mass
spectrometry (LC-MS/MS) and GC-MS/MS20 (table 2).

Urine nicotine and metabolites
Urine cotinine is a widely used biomarker of SHSe, with the sum
of free cotinine and cotinine glucuronide (conjugated) resulting
in higher concentrations in some studies.10 24e27 For comparison
purposes, researchers must consider whether free cotinine or
total (free plus conjugated) cotinine was measured. Free cotinine
is preferable to use as it correlates better with plasma cotinine
than total cotinine.7 Current state-of-the-art methods are
GC-MS/MS and LC-MS/MS, with limits of detection (LOD) of
0.05 ng/ml,20 21 a sensitivity concentration needed in countries
with low SHSe due to clean air regulations and lower air
nicotine concentrations.

The advantages of determining SHSe with urine are that
cotinine concentrations and other metabolites are higher than in
other biological fluids; it represents relatively acute exposure;
and collection is non-invasive. Disadvantages include the
facilities for privacy during collection, difficulty collecting in
population-based or children studies, variability in cotinine
conversion factor and needing to adjust for creatinine clearance
(data on renal diseases and prescription drugs that interfere with
metabolism and renal secretion).

Blood nicotine and metabolites
Nicotine, cotinine and 3-HC can all be measured in blood, but
cotinine is generally the preferred biomarker4 because of its
longer half-life.28 With regular, sustained exposures, the longer
cotinine t1/2 results in higher, more uniform steady-state
concentrations than nicotine. However, the cotinine t1/2 is
<1 day, indicating only recent SHSe. Cotinine t1/2 may be longer

in young children than in older children and adults,29 and
slightly shorter in women than in men.30 This reduction is
especially notable in pregnant women due to increased clearance
rates,31 and is critical when evaluating relative concentrations
and applying cotinine values to identify pregnant smokers and
non-smokers.
Cotinine is commonly measured in serum or plasma, with

comparable results from either matrix; although uncommon,
whole blood may also be used. Current analytic methods require
no more than 1 ml of serum, which is readily obtainable from
adults, although infants and young children may present chal-
lenges. GC-MS/MS and LC-MS/MS are preferred analytical
methods for these matrices.
A potential disadvantage of serum assays versus urine is lower

sensitivity, as urine cotinine concentrations are typically four-
fold to sixfold higher than in serum. If extremely sensitive
analytic methods are used, however, this is not a concern. As
serum does not require adjustment for hydration differences
among individuals, it provides a more uniform matrix
measurement than urine. Blood collection is invasive, however,
and salivary cotinine may be a necessary alternative. An
advantage for US studies is that using serum cotinine facilitates
direct comparison with representative data for US non-smokers
from the National Health and Nutrition Examination Survey
(NHANES).32 33

Saliva cotinine and metabolites
Cotinine molecules are small and relatively water soluble with
minimal protein binding in the blood, with concentration in
saliva that parallels serum, but approximately 15% to 40%
higher.34 Thus, the analytical sensitivity in this matrix is
approximately equal to serum, and most methods can process
either serum or saliva. The primary advantage of salivary coti-
nine measurements is that is a relatively non-invasive matrix
when collecting a blood sample is not feasible, or when requiring
multiple measurements over a limited period. Collection

Table 2 Analytical methods for measurement of biomarkers of secondhand smoke exposure (SHSe)

Method Sensitivity Specificity Cost Comments

Cotinine

Radioimmunoassay (RIA)13 14 0.10e2.00 ng/ml Variable
(poorest in urine)

Low Quick and relatively low cost
analysis of large number of samples

ELISA14 15 0.10e0.20 ng/ml Good Low Quick and relatively low cost analysis
of large number of samples

Gas chromatography-nitrogen-
phosphorous detection (GC-NPD)16

0.10e0.20 ng/ml Good Moderate Lacks sensitivity for very low level
of SHSe

Gas chromatography-mass
spectrometry (GC-MS)18

0.10e0.20 ng/ml Excellent High

Liquid chromatography-atmospheric
pressure chemical ionization tandem
mass spectrometry (LC-APCI MS/MS)21

<0.05 ng/ml Excellent Extremely high Current state-of-the-art method for
urine cotinine. It can perform 100
samples/day

High performance liquid
chromatography (HPLC)22 23

0.13e1.00 ng/ml Good Moderate

Nicotine

GC-MS23 0.02e0.25 ng/ml Excellent Moderate-high It has been used for nicotine
determination in hair and toenails

HPLC19 23 0.10e0.32 ng/ml Good Low It has been used for nicotine
determination in hair and with
electrochemical detection for toenails

NNAL (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol)

Liquid chromatography-tandem
mass spectrometry (LC-MS/MS)20

0.25 pg/ml Excellent Extremely high NNAL assay of choice.

Gas chromatography-thermal
energy analysis (GC-TEA)17

0.15 pmol/ml Excellent Moderate Difficult implementation

Modified from Benowitz 1996.4
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procedures are relatively simple and well tolerated. Contami-
nation, though unusual, is clearly a greater risk for saliva
samples than for serum samples. Issues of age, gender, race, oral
pH, type of diet, dehydration, or drug treatment and their effect
on salivary cotinine concentrations should be addressed for
variability.

Hair nicotine and metabolites
Hair nicotine has been used and validated as a biomarker of
SHSe among children and adults.35e38 Nicotine is incorporated
into hair if it is present in the circulation, and environmental
contamination of nicotine is minimal after washing
samples.35 37 The hair growth rate is 1 cm/month, 1 cm of hair
proximal to the scalp represents the last month’s exposure.39

Hair can characterise exposure and time; theoretically, 10-cm of
hair represents 10 months of past exposure, a longer period than
covered by other biomarkers. The average hair nicotine dose
(cumulative exposure/duration of exposure) is therefore less
affected by daily variability from fluctuating exposure, varying
metabolism and elimination of nicotine.40

The sensitivity of hair nicotine methods varies (LODs range
0.02e0.2 ng nicotine/mg hair).19 41 42 LC-ultraviolet (UV),42 or
GC-MS41 43 can be used for hair nicotine determination. Hair
nicotine concentrations are highly reproducible over 1 year,
proving the method’s sensitivity for detecting individual
changes in smoking habits and SHSe.43

Advantages of the hair matrix include collection ease, storage
at room temperature without degradation for up to 5 years, and
shipping without special handling.35 44 Scarcity of hair can
preclude using this approach for infants or some adults.
Chemical hair treatments, however, can reduce hair nicotine
concentration by 9% to 30% and relevant information should be
collected with hair samples for any necessary adjustments.45 46

Similar to most biomarkers, gender and race may play roles in
determining hair nicotine concentrations. Hair colour could
likely influence nicotine concentrations, since nicotine is bound
to melanin and the type and amount of melanin in hair varies
with hair colour. However, Zahlsen et al47 found that nicotine
uptake did not differ due to hair colour or thickness, or person’s
age or gender. Among children, younger children have higher
hair nicotine concentrations than older children, with the same
SHSe.45 48

Toenail nicotine and metabolites
Toenail nicotine concentration shows promise for SHSe assess-
ment, as it reflects relatively long exposure periods: depending
on the length of the clipping, the concentration can represent up
to several months of past exposure (toenails grow at a rate of
approximately 1 mm/month).49 In one study, toenail nicotine
concentrations strongly predicted self-reported exposure, even
after 20 years’ storage at room temperature.50 Similar to hair
samples, toenails can be collected easily and shipped without
temperature restrictions.

Toenails are less directly exposed than hair to environmental
nicotine, with concentrations only reflecting nicotine taken up
from blood circulation by nails during growth. Slow toenail
growth rates overcome day-to-day exposure variability and
provide potentially more stable estimates of average exposure,
which is critical to assessing long-term exposures.50 51 In one
study, toenail nicotine concentrations were significantly corre-
lated with reported tobacco smoking (r¼0.63).52 They are also
predictive of high and low SHSe among non-smokers50; in
newborns, fingernails and toenails have been used to determine
nicotine exposure in utero.53

Population data on toenail biomarker concentrations are not
available, and determining normative population concentrations
is critical to relating these concentrations to disease risk and
tobacco exposure. Given the low nicotine concentration per mg
of toenail, collecting clippings from all 10 toenails is recom-
mended. Age is inversely related to toenail nicotine concentra-
tions in women, even after controlling for cigarette
consumption and SHSe frequency,54 while nail fungus infection
and nail polish do not appear to influence concentrations or
exposure. No data exist on toenail nicotine concentrations
relating to gender or race. Laboratory methods to analyse nico-
tine in toenail samples include high-performance liquid chro-
matography-electrochemical detection (HPLC-ECD) (LOD of
0.1 ng/mg toenail),19 or GC-MS (LOD range 0.025e0.01 ng/mg
toenail).55 56

NNK metabolites in urine
NNK is a tobacco-specific lung carcinogen shown to induce
adenocarcinoma of the lung in rats, mice, or hamsters.9 Its
metabolites, tNNAL can be measured in the urine of SHS-
exposed non-smokers. NNK itself is not found in human urine
because of its extensive metabolism to NNAL and other
metabolites.9 57 As NNAL represents only 15% of NNK dose
intake, it is prone to interindividual and intraindividual vari-
ability due to metabolic variability of the other 85% of metab-
olites. tNNAL has been quantified in smokers’ blood,58 but its
measurement in SHS-exposed non-smokers’ blood has not been
reported and may be too low for current detection methods.
Highly sensitive, validated analytical methods available to
quantify tNNAL in urine are GC-TEA, GC-MS/MS and LC-MS/
MS. LC-MS/MS is currently the assay of choice for NNAL as
concentrations can be determined in first morning urine, spot
urine and 24 h urine samples.
The major advantages of the tNNAL biomarker are its speci-

ficity to tobacco smoke and its direct relationship to a lung
carcinogen. NNK is found only in tobacco productsdnever in the
general environment, unless SHS is present. Thus, NNAL detec-
tion in urine signifies exposure to, and uptake of, the lung
carcinogen NNK. The tNNAL biomarker is well established and it
is not detected in the urine of non-exposed individuals. Multiple
studies have demonstrated uptake of NNK by SHS-exposed non-
smokers, as well as transplacental exposure from smoking
mothers by analysing amniotic fluid or first morning urine.59 60

NNAL has a longer half-life than cotinine, thus representing
longer exposure. However, NNAL’s t1/2 of up to 3 weeks is much
less than nicotine’s half-life in hair or toenail matrices.
The disadvantages of tNNK are the needs for expertise in

analytical chemistry and costly equipment. NNAL is carcino-
genic and mutagenic and must be handled with extreme caution
in the laboratory. To date, the highest tNNAL concentration in
the urine have been observed in infants and children with SHSe
(80e90 fmol/ml urine), compared to concentrations of
20e50 fmol/ml urine in non-smoking adults.10 24 It is not clear
whether these are differences in metabolism between children
and adults, or in exposure or other factors. One study comparing
tNNAL concentrations in teen versus adult smokers did not find
significant differences, suggesting that metabolic differences are
unimportant, but further study is needed.26 Studies of smokers
do not indicate gender differences in tNNAL concentrations; this
is also true for exposed non-smokers. There may be racial
differences in tNNAL concentrations in smokers’ urine, as some
studies suggest higher concentrations in African Americans
compared to Caucasians.61 62 Whether these observations extend
to non-smokers is unknown.
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UTILITY OF NNK METABOLITES VERSUS NICOTINE
METABOLITES
A moderately strong correlation is evident between NNK
metabolites and nicotine metabolites in the urine of SHS-
exposed non-smokers, with similar results in smokers. In a study
of 74 children, as tNNAL increased from 0.05 to 0.35 pmol/ml
urine, total cotinine (the sum of cotinine and its glucuronide)
increased from 15 to 50 ng/ml urine,25 leaving little doubt that
cotinine at these concentrations in non-smokers’ urine implies
the presence of tNNAL. Since it is easier and less expensive to
measure nicotine than tNNAL, one could argue that the latter is
not necessary. tNNAL in urine, however, may have greater
public health impact and better predictive utility for the adverse
health effects of SHSe, compared to detection of nicotine
metabolites. This specificity reflects the pulmonary carcinogen
NNAL and its parent NNK, although nicotine may be related to
carcinogenesis, atherosclerosis, platelet adhesion and coronary
heart disease (CHD) vasoconstriction, and has addictive prop-
erties and high-dose toxicity. Detection of an actual carcinogen,
tNNAL, in non-smokers’ urine, signals a hazard, and using this
biomarker to discourage smoking (eg, feedback for parents of
exposed children) has been proposed. Its detection in the urine of
SHS-exposed non-smokers repeatedly attracts media attention,
leading to further support for tobacco-free legislation and
tobacco control.

FACTORS AFFECTING CONCENTRATIONS OF BIOMARKERS
Age
Differences in drug elimination between children and adults are
well documented, particularly during neonatal and early infant
periods, when hepatic, renal, cardiac and lung functions are
immature.63 64 Nicotine and cotinine pharmacokinetics in
neonates exposed in utero to nicotine had significantly longer
nicotine t1/2 in the infants’ serum than that reported for adults
(neonates t1/2 nicotine¼11.2 h (95% CI 8.0 to 18.9 h); adults t1/2
nicotine¼approximately 2 h) with no differences for cotinine,29

suggesting that differences in the nicotine t1/2 but not in the
cotinine t1/2 between neonates and adults may relate to differ-
ences in nicotine metabolism.65 Several studies report cotinine
elimination in children’s urine, and all show younger children
having slower elimination and/or higher concentrations than
older children or adults66e68; also observed with hair (nicotine
and cotinine).45 48 69

Disease state
Disease states may affect metabolite concentrations in children
and adults. Children with asthma show higher cotinine
concentrations in hair and urine compared to children without
asthma.70 71 However, it is difficult to determine if the differ-
ences are due to metabolism or exposure as the studies only used
parental report to measure environmental exposure.

Other sources of exposure to nicotine
Other sources of nicotine exposure in non-smokers include
breastfed infants with smoking mothers, even if the infant does
not have SHSe. Children breast fed by mothers who smoke
outside the house can also have higher urine cotinine concen-
trations than bottle-fed children with direct SHSe.72 One study
reported Alaska Native children, aged 4 years and older, chewing
tobacco.73 Finally, through hand-to-mouth activity, children
may ingest floor dust containing nicotine or touch fabrics that
have been exposed to SHS, such as smokers’ clothing.74

INTERPRETING BIOMARKER CONCENTRATIONS
Results of quantitative biomarkers’ concentrations of SHSe need
careful interpretation, which could consider incorporating cut-
off points to separate smokers from SHS-exposed non-smokers;
using threshold concentrations for significant consequences of
SHSe; and assessing the severity of SHSe in non-smokers.

Separating smokers and non-smokers
As cotinine is specific for nicotine exposure, any detectable
concentration indicates exposure to tobacco, tobacco smoke, or
medicinal nicotine. NNK is also specific for tobacco and is not
present in medications or food; any NNAL concentration
indicates exposure to tobacco or tobacco smoke.
Daily smokers typically have plasma or serum cotinine

concentrations of 100 ng/ml or higher, or urine tNNAL
concentrations of 1000 fmol/ml or higher,57 while light or non-
daily smokers can have cotinine concentrations below 10 ng/ml.
Heavy SHSe may result in plasma cotinine concentrations up to
25 ng/ml.75 Thus, overlap may occur between cotinine concen-
trations of non-smokers who experience heavy SHSe and light/
occasional smokers. The optimal cut-off point should minimise
false classification of SHS-exposed non-smokers versus smokers,
and will depend on the extent of non-smokers’ SHSe and the
smoking behaviour of the population’s smokers.
The most widely used serum cotinine cut-off point (14 ng/ml)

to distinguish smokers from non-smokers is based on work from
the early 1980s in England.76 More recently, a cut-off point of
12 ng/ml was determined using UK data (1996e2004) from
a representative sample,77 which suggests that SHSe in England
did not declined dramatically over 20 years. SHSe in the US is
much lower today, however, compared to 1980s England. An
optimal cut-off point of 3 ng/ml was determined using
NHANES data (1999e2004).78 Due to differences in smoking
behaviours and perhaps in cotinine metabolism, the optimal US
cut-off point, for adults, varies by race/ethnicity (non-Hispanic
whites: 5 ng/ml, non-Hispanic blacks: 6 ng/ml, Mexicane
Americans: 1 ng/ml).78 The low cut-off in MexicaneAmericans
reflects lower SHSe and higher prevalence of light/occasional
smoking.
Generalisability from national sampling to particular

subpopulations requires careful consideration, particularly if the
target population’s exposure profile is unusual. Thus, researchers
should consider the target population when selecting the
optimal cut-off point to separate smokers from non-smokers (eg,
casino workers with high SHSe (optimal cut-off point:
>3 ng/ml). Hair cotinine cut-off point values in women, preg-
nant women and children (0.8, 0.2 and 0.2 ng/mg, respectively)
have been determined using data from the USA, Canada and
France.79 Lack of representative population data for other
biomarkers in the different matrices makes prediction of optimal
cut-off values difficult for these markers.

Assessing risk from SHSe
For researchers interpreting a particular nicotine, cotinine, or
NNAL concentration as a biomarker of risk from exposure, an
appropriate comparison group is required. Three possible
approaches are available: (1) to consider that any concentration
resulting from a specific biomarker of SHSe such as nicotine,
cotinine, or NNAL, indicates an increased risk28; (2) to classify
exposure with respect to tertile or quartile of a general popula-
tion of exposed individuals, if available (eg, US NHANES
(serum),80 England’s Health Survey (saliva),77); and (3) to clas-
sify exposure severity based on known environmental exposure
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(eg, those heavily exposed in bars or casinos) or on association
with disease (see Relationship of Biomarkers to Disease Risk).

Interpreting total NNAL concentrations in urine
Average tNNAL concentrations in the urine of SHS-exposed
non-smokers range from 18 to 90 fmol/ml urine, while for
smokers this figure is 1000 fmol/ml urine or higher.3 57 Excep-
tions occur, however, and there may be some overlap in smokers
and non-smokers’ NNAL concentrations. No cut point differ-
entiating smokers from non-smokers has been determined.

Based on a 50 fmol/ml urine concentration in SHS-exposed
non-smokers, tNNAL excretion is estimated at 75 pmol/day.81

Since tNNAL represents 15% of the NNK dose, NNK exposure in
SHS-exposed non-smokers is estimated at 500 pmol/day, or
a dose of about 1.1 mg (0.01 mg/kg) in 30 years of SHSe. The
lowest total dose of NNK shown to induce lung tumours in
rats is 1.8 mg/kg,9 or 200 times higher than the dose of
a SHS-exposed non-smoker.

Another method is to compare tNNAL concentrations in SHS-
exposed non-smokers to tNNAL concentrations in smokers. In
one study, tNNAL concentrations in the urine of SHS-exposed
women were 5.6% of that in the urine of their partners who
smoked.82 Epidemiological studies estimate that the excess risk
for lung cancer in SHS-exposed women is about 20% higher than
that for unexposed women83, or 1% to 2% of the excess risk for
lung cancer in smokers (1400% to 1900%) compared with non-
smokers, a figure consistent with the 5.6% relative NNAL
concentrations.82

RELATIONSHIP OF BIOMARKERS TO DISEASE RISK
Two criteria for valid biomarkers of risk are that they predict
disease risk and that a change in biomarker concentration
corresponds to a change in disease risk. Such research is prob-
lematic because most SHSe-related diseases take years to
develop, and established biomarkers, such as cotinine, measure
short-term exposure. If, however, measuring a biomarker at
a particular time reflects chronic SHSe over a longer period, then
a quantitative relationship between biomarker concentrations
and disease may exist.

SHSe is a known cause of CHD.28 Several studies among
adults have found a positive relationship with cotinine levels and
CHD prevalence (170%; p<0.05),84 and CHD development
(50%; p<0.05).85 Toenail nicotine concentrations were associated
with CHD events among SHS-exposed nurses,54 although this
association was not statistically significant, possible because of
drastic SHSe reduction in US hospitals between 1982 and 1998.

SHSe causes respiratory disease among children.28 Higher
saliva cotinine concentrations were associated with doubling the
‘tendency for colds to go to the chest’ and reduction of lung
function markers in children.86 Among adults with asthma or
chronic obstructive pulmonary disease (COPD), higher urine
cotinine was associated with greater COPD severity and lower
physical health status and disease-specific quality of life.87

COPD outcomes, however, were not associated with self-
reported SHSe or personal badge nicotine concentrations. Urine
NNAL concentrations is a better predictor of SHSe effects
among COPD subjects.88 The risk of asthma-related hospital
admissions in adults increased with higher hair concentrations
of nicotine, but not cotinine.89 Significant decreases in lung
function and increases in inflammatory markers were observed
after acute SHSe (1 h), particularly in men.90 In addition,
although the effects on lung function appear to disappear within
60 min; inflammatory cytokines remain elevated for at least 3 h
after SHSe.

SHSe reduces birth weight28 and cotinine levels of SHS-
exposed pregnant women have been statistically significantly
associated with reductions in mean birth weight (range: 73 g to
200 g).28 91e93 Non-significant associations have found with hair
nicotine levels.94 95

CONCLUSIONS
This article summarises the current scientific evidence on the use
of biomarkers to measure SHSe, analytical methods, biological
matrices and their interpretation. Cotinine is the biomarker of
choice for measuring SHSe in urine, blood and saliva. Nicotine
can be measured in hair and toenails. NNK is a tobacco-specific
lung carcinogen. NNAL, a NNK metabolite, represents only 15%
of the NNK dose intake but can be detected in the urine of SHS-
exposed non-smokers. Use of each biomarker has its advantages
and disadvantages, making selection dependent on the study’s
objectives, subjects, design and setting, funding, issues of
privacy, invasiveness and subject’s age. The length of SHSe may
result in selecting hair or toenails over biofluids. The information
provided here may assist investigators in selecting the optimal
biomarker when designing their study.
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